

MASTER SYLLABUS 2025-2026

A. Academic Division: Liberal Arts

B. Discipline: Statistics

C. Course Number and Title: STAT1010 Probability and Statistics

D. Assistant Dean: Laura Irmer

E. <u>Credit Hours</u>: 3

F. <u>Prerequisites</u>: MATH0084 (Minimum grade of C- required) or qualifying placement test score

OR

Co-requisites: STAT 0086

G. <u>Last Course/Curriculum Revision Date</u>: Fall 2023 Origin date: 06/08/2011

H. <u>Textbook(s) Title</u>:

OpenStax Free Textbook (available for download or view)

Introductory Statistics

• Authors: OpenStax College

• Copyright Year: 2018

• Edition: N/A

• Link: https://openstax.org/details/books/introductory-statistics

Online/Hybrid Courses:

Online Access Code thru Web Assign (E-book included)

- Author: OpenStaxISBN 9781337777186
- I. Workbook(s) and/or Lab Manual: Access to Microsoft Excel; TI-83 or TI-84 calculator required
- J. <u>Course Description</u>: This course provides the student with an overview of probability and statistics. Probability terminology, concepts and rules are emphasized in solving probability problems. Descriptive statistics, including measures of central tendency and dispersion, charts, tables and diagrams are used to summarize data. The student is introduced to the binomial, Poisson, hyper-geometric, normal and t-distributions. Confidence intervals, hypothesis testing, correlation, and linear regression are used to make conclusions concerning population parameters from sample data. This course meets the requirements for Transfer 36 Introductory Statistics TMM010.

K. <u>College-Wide Learning Outcomes</u>:

College-Wide Learning Outcome	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	Quantitative Literacy VALUE Rubric, middle of term.

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

	Outcomes	Assessments – How it is met & When it is met
1.	Define foundational terms used in statistics and	HW, Project, Tests, final exam, early in the
	identify characteristics of a well-designed statistical	term.
	study.	
2.	Collect, organize, and summarize data in tables,	HW, Project, Tests, final exam
	charts, and with statistics/parameters.	Early in the term.
3.	Describe the relationship between two variables	HW, Project, Tests, final exam
	both visually and numerically.	Early in the term.
4.	Apply the rules and concepts of probability to solve	HW, Tests, final exam
	a variety of problems.	Middle of the term.
5.	Apply the binomial, poison, and hyper-geometric	HW, Tests, final exam
	discrete probability distributions to solve	Middle of the term.
	appropriate statistical problems.	
6.	Apply the normal distribution to solve appropriate	HW, Tests, final exam
	statistical problems.	Late in the term.
7.	Define sampling distributions and generate said	HW, Project, Tests, final exam
	distributions to observe the Central Limit Theorem.	Late in the term.
8.	Calculate confidence intervals for means and	HW, Project, Tests, final exam
	proportions using the z and t distributions.	Late in the term.
9.	Compute one population tests for means and	HW, Project, Tests, final exam
	proportions using the z and t distributions.	Late in the term.

M. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80-82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	C	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor
00-59	F	0.00	Failure

N. <u>College Procedures/Policies</u>:

North Central State College believes that every student is a valued and equal member of the community.* Every student brings different experiences to the College, and all are important in enriching academic life and developing greater understanding and appreciation of one another. Therefore, NC State College creates an inclusive culture in which students feel comfortable sharing their experiences. Discrimination and prejudice have no place on the campus, and the College takes any complaint in this regard seriously. Students encountering aspects of the instruction that result in barriers to their sense of being included and respected should contact the instructor, assistant dean, or dean without fear of reprisal.

* Inclusive of race, color, religion, gender, gender identity or expression, national origin (ancestry), military status (past, present or future), disability, age (40 years or older), status as a parent during pregnancy and immediately after the birth of a child, status as a parent of a young child, status as a foster parent, genetic information, or sexual orientation

Important information regarding College Procedures and Policies can be found on the syllabus supplement located at:

 $\underline{https://ncstatecollege.edu/documents/President/PoliciesProcedures/PolicyManual/Final\%20PDF/14-\underline{081b.pdf}$

Academic Division:	Liberal Arts	Discipline:	Mathematics	
Course Coordinator:	Sara K. Rollo			
Course Number:	STAT 1010-911	Course Title:	Probability and Statistics	
Semester / Session:	Fall 2025/Session B	Start / End Date	: _10/13/2025 - 12/12/2025	
Instructor Information	on			
Name: Christin	e Shearer	Credentials: M	I.S. Mathematics/B.S. Mathematics	
Phone Number: 419-755-4755		E-Mail Address: <u>cs</u>	<u>cshearer@ncstatecollege.edu</u>	
Office Location:			Ondays 11am-12pm, Wednesdays 10am-	

I. <u>Topical Timeline (Subject to Change)</u>:

Weeks	Topics	Assignment	Due Date
1	Learn an overview of statistics, sampling methods, and types of data	Chapter 1 Homework	10/18
	Collect, organize, and summarize data in tables, charts, and with statistics/parameters.	Chapter 2 Homework	10/18
	Determine measures of central tendency and measures of dispersion		
2	Topics from Chapters 1 and 2	Chapter 1 and 2 Test	10/21
		Benchmark 1	10/21
	Describe the relationship between two variables both visually and numerically	Chapter 12 Homework	10/25
3	Apply the rules and concepts of probability to solve a variety of problems	Chapter 3 Homework	10/28
	Topics from Chapters 12 and 3	Chapter 12 and 3 Test	11/1
	Topics from Chapter 2	Benchmark 2	11/1
4	Apply the binomial, Poisson, geometric, hypergeometric and discrete probability	Chapter 4 Homework	11/3
	distributions to solve appropriate statistical problems	Chapter 4 Quiz	11/7
	Topics from Chapter 3	Benchmark 3	11/7
5	Apply the uniform and exponential probability distributions to solve appropriate statistical problems	Chapter 5 Homework	11/10
	Apply the normal distribution to solve appropriate statistical problems	Chapter 6 Homework	11/14
6	Define sampling distributions and use the Central Limit Theorem	Chapter 7 Homework	11/17
	Topics from Chapters 6 and 7	Chapter 6 and 7 Test	11/21
7	Calculate confidence intervals for means and proportions using the z and t	Chapter 8 Homework	11/24
	distributions	_	
8	Topics from Chapter 8	Chapter 8 Quiz	12/1
	Compute one population tests for means and proportions using the z and t distributions	Chapter 9 Homework	12/5
	Topics from Chapters 8 and 9	Benchmark 4	12/5
9	Topics from Chapters 1, 2, 3, 8 and 9	Project	12/8
	Topics from the course	Final Exam	12/12

II. Grading and Testing Guidelines:

Final Grade Calculation

Activity	Qty	Points	Percentage
Homework	10	100	10%
Project	1	100	10%
Quizzes	2	200	10%
Tests	3	300	50%
Final Exam	1	100	20%
Total			100%

Course Number:	Course Title:
Semester / Session:	Start / End Date:

IV. <u>Examination Policy</u>:

There will be two quizzes (after Chapter 4 and after Chapter 8). They are timed and you will have two attempts per question on the quiz. You will have 3 hours (180 minutes) to complete each quiz. The quizzes must be completed in a single setting (i.e. the timer cannot be paused).

There will be three tests (Chapters 1 and 2, Chapters 12 and 3, Chapters 6 and 7). There will also be a comprehensive final exam at the end of the semester. They are timed and you will have two attempts per question. You will have 4 hours (240 minutes) for each of the three tests. You will have 6 hours (360 minutes) for the final exam. The tests and final exam must be completed in a single setting (i.e. the timer cannot be paused).

Students will not be allowed to begin a quiz or test and then request an extension. Do not click on the quiz or test link until you are fully prepared to take the exam.

The homework, quizzes, tests and final exam will be completed on WebAssign. There is a project due at the end of the course that will not be completed on WebAssign. I have benchmark assignments due throughout the semester to help keep you on track with the project. The project and the benchmark assignments will be submitted through Canvas.

V. <u>Class Attendance and Homework Make-Up Policy</u>:

This is an online hybrid course which means that we will meet as a class virtually through Zoom on Mondays and Wednesdays from 6:00PM-7:15PM. The rest will be done by watching videos provided by me and reading the textbook. I will also be holding office hours through Zoom on Mondays from 11:00AM-12:00PM, Wednesdays from 10:00AM-12:00PM and Fridays from 10:00AM-12:00PM on Zoom and you can also contact me to schedule another time to meet virtually.

Your assignments will be due twice per week on Tuesdays and Saturdays by 11:59pm. Unlike the quizzes and tests, you will have 100 attempts per question on the homework. This means that you can work towards 100% on every homework assignment if you keep working on them!

VI. <u>Classroom Expectations</u>:

I expect you to attend class on Zoom on Mondays and Wednesdays. Attendance will enhance your understanding of the material and therefore increase your chance of success in the course. In preparation for each week's meeting, I would like you to read the chapter, watch the lecture video(s) that I post on Canvas and look at the homework so that you know where you might be struggling. We will then work through examples to help you complete the homework and quizzes. When a test is due, we can use the class time for review.

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Week 1	Oct 12	Oct 13	Oct 14	Oct 15	Oct 16	Oct 17	Oct 18 Chapter 1 Homework Due Chapter 2 Homework Due
Week 2	Oct 19	Oct 20	Oct 21 Chapter 1 and 2 Test Due Benchmark 1 Due	Oct 22	Oct 23	Oct 24	Oct 25 Chapter 12 Homework Due
Week 3	Oct 26	Oct 27	Oct 28 Chapter 3 Homework Due	Oct 29	Oct 30	Oct 31	Nov 1 Chapter 12 and 3 Test Due Benchmark 2 Due
Week 4	Nov 1	Nov 2	Nov 3 Chapter 4 Homework Due	Nov 4	Nov 5	Nov 6	Nov 7 Chapter 4 Quiz Due Benchmark 3 Due
Week 5	Nov 8	Nov 9	Nov 10 Chapter 5 Homework Due	Nov 11	Nov 12	Nov 13	Nov 14 Chapter 6 Homework Due
Week 6	Nov 15	Nov 16	Nov 17 Chapter 7 Homework Due	Nov 18	Nov 19	Nov 20	Nov 21 Chapter 6 and 7 Test Due
Week 7	Nov 22	Nov 23	Nov 24 Chapter 8 Homework Due	Nov 25	Nov 26	Nov 27	Nov 28
Week 8	Nov 29	Nov 30	Dec 1 Chapter 8 Quiz Due	Dec 2	Dec 3	Dec 4	Dec 5 Chapter 9 Homework Due Benchmark 4 Due
Week 9	Dec 6	Dec 7	Dec 8 Project Due	Dec 9	Dec 10	Dec 11	Dec 12 Final Exam Due