

MASTER SYLLABUS

2025-2026

A. <u>Academic Division</u>: Liberal Arts

B. Discipline: Mathematics

C. Course Number and Title: MATH1151 Calculus II

D. <u>Dean</u>: Dr. Steven Haynes

E. <u>Credit Hours</u>: 5

F. <u>Prerequisites</u>: MATH1150 (Minimum grade of C- required)

G. <u>Last Course/Curriculum Revision Date</u>: Fall 2023 Origin date: 06/08/2011

H. <u>Textbook(s) Title</u>:

Calculus II w/Desmos (OHM Bundle) Access Code

Author: Lumen LearningCopyright Year: 2024

• Edition:

• ISBN #9781640873629

I. Workbook(s) and/or Lab Manual: Supplies: TI-83 or TI-84 required

J. <u>Course Description</u>: This course is a continuation of MATH1150 Calculus I. Topics include integration and applications, calculus of exponential and logarithmic functions, hyperbolic functions, methods of integration, integration by parts, indeterminate forms and L'Hôpital's Rule, moments and centers of mass, fluid pressure and force, integration techniques, series including Taylor and Maclaurin, calculus of conics, calculus of parametric equations, and polar forms of conic sections including Kepler's Laws. This course meets the requirements for OTM Calculus II TMM006. If combined with MATH1150, it meets the requirements for OTM Calculus I & II sequence TMM017.

K. <u>College-Wide Learning Outcomes</u>:

College-Wide Learning Outcome	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

Outcomes		Assessments – How it is met	
		& When it is met	
1.	Employ a variety of integration techniques to	Homework, Tests, Final Exam	
	evaluate special types of integrals and apply to	Throughout the term.	
	physical, biological or economic situations.		
2.	Approximate a definite integral by the	Homework, Tests, Final Exam	
	Trapezoidal Rule.	Early in the term.	
3.	Evaluate limits that result in indeterminate forms,	Homework, Tests, Final Exam	
	including the application of L'Hôpital's Rule.	Middle of the term.	
4.	Evaluate improper integrals.	Homework, Tests, Final Exam	
		Late in the term.	
5.	Find, graph, and apply the equations of conics.	Homework, Tests, Final Exam	
		Late in the term.	
6.	Determine the existence of, estimate numerically	Homework, Tests, Final Exam	
	and graphically, and find algebraically the limits	Late in the term.	
	of sequences and determine whether a series		
	converges.		
7.	Find the nth Taylor polynomial at a specified	Homework, Tests, Final Exam	
	center for a function and estimate the error term.	Late in the term.	
8.	Analyze curves given parametrically and in polar	Homework, Tests, Final Exam	
	form and find the areas of regions defined by such	Late in the term.	
	curves.		
9.	Solve separable differential equations and	Homework, Tests, Final Exam	
	understand the relationship between slope fields	Middle of the term.	
	and solution curves.		

M. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80–82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	C	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor
00-59	F	0.00	Failure

N. <u>College Procedures/Policies</u>:

North Central State College believes that every student is a valued and equal member of the community.* Every student brings different experiences to the College, and all are important in enriching academic life and developing greater understanding and appreciation of one another. Therefore, NC State College creates an inclusive culture in which students feel comfortable sharing their experiences. Discrimination and prejudice have no place on the campus, and the College takes any complaint in this regard seriously. Students encountering aspects of the instruction that result in barriers to their sense of being included and respected should contact the instructor, assistant dean, or dean without fear of reprisal.

* Inclusive of race, color, religion, gender, gender identity or expression, national origin (ancestry), military status (past, present or future), disability, age (40 years or older), status as a parent during pregnancy and immediately after the birth of a child, status as a parent of a young child, status as a foster parent, genetic information, or sexual orientation

Important information regarding College Procedures and Policies can be found on the syllabus supplement located at

https://ncstatecollege.edu/documents/President/PoliciesProcedures/PolicyManual/Final%20PDFs/14-081b.pdf

Academic Division:	Liberal Arts	Discipline:	Mathematics
Course Coordinator:	Sara K. Rollo		
Course Number:	MATH 1151 –921	Course Title:	Calculus II
Semester / Session:	Fall 2025-Session B	Start / End Da	te: Oct 13 th 2025-Dec 12 th 2025
Instructor Informatio		Condentiale	MS Mathematics
Name: Amanda	Cooper	Credentials:	WIS Mathematics
Phone Number:		E-Mail Address:	Acooper2@ncstatecollege.edu
Office Location:	Fallerius	Office Hours:	Friday from 9-10 am in Zoom

I. <u>Topical Timeline (Subject to Change)</u>:

MATH 1151	Day 1 – Wednesday	Day 2-Friday
1 (Put dates of week)	Complete Assignment:	Complete Assignment:
	Topic 1 HW Due 10/15/2025	Test Topic 1 Due 10/17/2025
	Outcomes/objectives:	_
	Differentiate and integrate natural	
	logarithmic, exponential, inverse	
	trigonometric, and hyperbolic	
	functions, and their inverses	
2	Complete Assignment:	Complete Assignment:
	Topic 2 HW Due 10/22/2025	Test Topic 2 Due 10/24/2025
	Outcomes/objectives:	
	Interpret and use slope fields in	
	mathematical situations, solve	
	differential equations involving growth	
	and decay, solve by using separation of	
	variables and solve first-order linear	
	and non-linear differential equations	
3	Complete Assignment:	Complete Assignment:
	Topic 3 HW Due 10/29/2025	Topic 4 HW Due 10/31/2025
	Outcomes/objectives:	Outcomes/objectives:
	Find the area of a region between two	Find arc length and surface of
	curves, find the volume using both the	revolutions of a function, solve
	disc and shell methods	problems involving work, fluid pressure
		and fluid force and find centers of mass
4	Complete Assignment:	Complete Assignment:
	Test Topics 3 and 4 Due 11/5/2025	Topic 5 HW Due 11/7/2025
	•	Outcomes/objectives:
		Learn and use integration by parts,
		integrate trigonometric functions, and
		integrate using trigonometric
		substitution
5	Complete Assignment:	Complete Assignment:
	Topic 6 HW Due 11/12/2025	Test Topics 5 and 6 Due 11/14/2025
	Outcomes/objectives:	_
	Integrate using partial fraction	
	decomposition, find integrals by	
	numerical integration, use L'Hopital's	
	Rule for indeterminate forms, and	
	integrate improper integrals	

 Course Number:
 Math 151-921
 Course Title:
 Calculus II

 Semester / Session:
 Fall 2025-Session B
 Start / End Date:
 Oct 13th 2025- Dec 12th 2025

6	Complete Assignment:	Complete Assignment:
	Topic 7 HW Due 11/19/2025	Topic 8 HW Due 11/21/2025
	Outcomes/objectives:	Outcomes/objectives:
	Learn sequences, determine the	Compare series to find convergence,
	convergence of a series, and use the	determine convergence for alternating
	integral test and p-series to determine	series and by the ratio and root tests
	convergence	
7	Complete Assignment:	Complete Assignment:
	Topic 9 HW Due 12/3/2025	Test Topics 7, 8 and 9 Due 12/5/2025
	Outcomes/objectives:	
	Use Taylor polynomials to approximate	
	an elementary function, represent	
	functions by power series, and find the	
	convergence of Taylor and Maclaurin	
	series	
8	Complete Assignment:	Complete Assignment:
	Topic 10 HW Due 12/10/2025	Final Exam Due 12/12/2025
	Outcomes/objectives:	
	Graph conics, plane curves that are	
	expressed as parametric equations,	
	review polar coordinates and polar	
	functions and their equations, find the	
	area and arc length of problems in polar	
	form and find polar forms of conic	
	sections	

II. Course Assignments:

- 1. Quizzes (if assigned)
- 2. Tests
- 3. Homework
- 4. Final Exam

III. Grading and Testing Guidelines:

Activity	Qty	Total Points	Percentage
Homework	10	239	25%
Tests	4	69	50%
Final	1	25	25%
Total			100%

IV. <u>Examination Policy</u>:

- Exams/Quizzes must be completed by the indicated due date.
- Due dates are on both Canvas and on Lumen.
- Exams/Quizzes are to be completed using the online component of the course.
- Check Canvas for the up-to-date grade on the test/quiz and in the class.
- All tests/quizzes are open starting the first day of the semester and will close on the due date. You can take the test/quiz any
 day leading up to the due date.
- There is a time limit for the test/quiz so be diligent while taking the test/quiz and be prepared prior to the start of it!!
- You will have TWO attempts per question for each quiz and test
- Please note that I can see if you have viewed the answer key. I will not grant extensions if you have viewed
 the answer key.

Course Number:	Math 151-921	Course Title:	Calculus II
Semester / Session:	Fall 2025-Session B	Start / End Date:	Oct 13 th 2025- Dec 12 th 2025

V. Class Attendance and Homework Make-Up Policy:

- Homework is to be completed using the online component of the course.
- Homework must be completed by the indicated due date.
- Due dates are on both Canvas and on Lumen.
- Check Canvas for the up-to-date grade on the homework and in the class.
- There is no time limit for the homework.
- You have multiple attempts to get the homework correct.
- All homework is open starting the first day of the semester and will close on the due date. You can complete the homework
 any day leading up to the due date.
- Be sure to utilize the resources available to you The lecture videos and the resources available through Canvas

VI. Online Classroom Expectations:

- If you post or state a message/discussion/comment, then please be respectful to your classmates and to me.
- You are expected to complete the assignments by the indicated due dates.
- You can expect a turn- around time for both grades (for assignments completed on time) to be within 24 hours of the assignment due date passing and communication to be within 24 hours of being received
- The assignments move quickly. Be sure to write due dates and to stay organized.
- Ask Questions Often!
- Any student who requires reasonable accommodations related to a disability should inform the course instructor and the Coordinator of Specialized Services (Room 138 in Kee Hall; phone 419-755-4727)