

MASTER SYLLABUS

2025-2026

- A. <u>Academic Division:</u> Liberal Arts
- B. <u>Discipline:</u> Mathematics
- C. <u>Course Number and Title:</u> MATH1110 College Algebra
- D. <u>Assistant Dean</u>: Laura Irmer
- E. Credit Hours: 4
- F. <u>Prerequisites</u>: MATH0084 (Minimum grade of C- required) or qualifying placement test score
- G. Last Course/Curriculum Revision Date: Fall 2023 Origin date: 06/08/2011
- H. <u>Textbook(s) Title</u>:

College Algebra with Co-Requisite Support - Access Code

Author: Lumen Learning Publisher: Lumen, Inc ISBN 978-1-64087-291-2

Copyright: 2023

- I. Workbook(s) and/or Lab Manual: Supplies: TI-84/83 Calculator is required.
- J. Course Description:

A study of:

- 1. Polynomial operations, rational expressions, exponents, radicals;
- 2. Linear and quadratic equations, inequalities, absolute value applications and their graphs;
- 3. Graphs of elementary functions and non-functions including inverse functions, combining functions, and translating and transforming functions;
- 4. Study of polynomial functions, including the Fundamental Theorem of Algebra, zeroes of polynomials, rational functions, partial fractions;
- 5. Exponential and logarithmic functions including graphs and applications;
- 6. Gauss-Jordan elimination and Cramer's Rule.

This course meets the requirements for OTM College Algebra TMM001

K. <u>College Wide Learning Outcomes:</u>

College-Wide Learning Outcomes	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	Quantitative Literacy VALUE Rubric, midterm exam

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

	Outcomes	Assessments – How it is met & When it is met
1.	Determine whether an algebraic relation or graph represents a function and perform transformation of those functions.	Homework and tests regularly throughout the term and Final Exam.
2.	Add, subtract, multiply, divide and compose a variety of functions.	Homework and tests regularly throughout the term and Final Exam.
3.	Analyze the graph of a variety of functions and their inverses.	Homework and tests regularly throughout the term and Final Exam.
4.	Use the Remainder and Factor Theorems for polynomial functions.	Homework and tests regularly throughout the term and Final Exam.
5.	Solve application problems including creating mathematics which model a wide range of phenomena.	Homework and tests regularly throughout the term and Final Exam.
6.	Solve equations and systems of equations with a variety of methods (including technology) and determine symmetry using their graphs.	Homework and tests regularly throughout the term and Final Exam.
7.	Solve inequalities graphically, algebraically, and with using technology and solve systems of inequalities.	Homework and tests regularly throughout the term and Final Exam.
8.	Identify and express conics in standard rectangular form and graph.	Homework and tests regularly throughout the term and Final Exam.
9.	Solve polynomials over the complex numbers system.	Homework and tests regularly throughout the term and Final Exam.
10.	Write series in summation notation and find the sum of arithmetic and geometric series.	Homework and tests regularly throughout the term and Final Exam.

M. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80–82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	С	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor

N. College Procedures/Policies:

North Central State College believes that every student is a valued and equal member of the community.* Every student brings different experiences to the College, and all are important in enriching academic life and developing greater understanding and appreciation of one another. Therefore, NC State College creates an inclusive culture in which students feel comfortable sharing their experiences. Discrimination and prejudice have no place on the campus, and the College takes any complaint in this regard seriously. Students encountering aspects of the instruction that result in barriers to their sense of being included and respected should contact the instructor, assistant dean, or dean without fear of reprisal.

* Inclusive of race, color, religion, gender, gender identity or expression, national origin (ancestry), military status (past, present or future), disability, age (40 years or older), status as a parent during pregnancy and immediately after the birth of a child, status as a parent of a young child, status as a foster parent, genetic information, or sexual orientation

Important information regarding College Procedures and Policies can be found on the syllabus supplement located at

https://ncstatecollege.edu/documents/President/PoliciesProcedures/PolicyManual/Final%20PDFs/14-081b.pdf

Academic Division:	Liberal Arts	Discipline:	Mathematics		
Course Coordinator:	Sara K. Rollo				
Course Number:	MATH 1110-921	Course Title:	College Algebra		
Semester / Session:	Fall 2025/Session A Start / End Date		te: 10/13/2025 - 12/12/2025		
Instructor Informatio	on				
Name: Christin	e Shearer	Credentials: M.	S. Mathematics/B.S. Mathematics		
Phone Number:	419-755-4755	E-Mail Address: <u>csl</u>	earer@ncstatecollege.edu		
Office Location:			ondays 11am-12pm, Wednesdays 10am-12pm,		

I. <u>Topical Timeline / Course Calendar (Subject to Change)</u>:

Weeks	Topics Assignment		
1	Review equations and inequalities and cover rectangular coordinates, graphing	Review for Success: Topic 1	10/18
	utilities and introduce graphing equations	Topic 1 Homework	10/18
2	Utilize the distance and midpoint formulas and graph circles, lines and study	Topic 2 Homework	10/22
	variation	Topic 2 Test	10/22
	Graph functions and learn of their properties, study and practice	Review for Success 1: Topic 3	10/25
	transformations, and build functions using mathematical models	Review for Success 2: Topic 3	10/25
3	Graph functions and learn of their properties, study and practice	Topic 3 Homework	10/29
	transformations, and build functions using mathematical models	Topic 3 Test	10/29
	Build linear and quadratic functions from data and build quadratic models from	Review for Success: Topic 4	11/1
	verbal descriptions and from data	Topic 4 Homework	11/1
4	Graph polynomial functions and find real and complex zeros of a polynomial	Review for Success: Topics 1 and 5	11/5
	function. Study the properties of and graph rational functions and inequalities	Review for Success: Topics 5	11/5
		Topic 5 Homework	11/8
5	Topics from weeks 1 – 4	Midterm (Topics 1 − 5)	11/12
	Review composite functions, one-to-one functions and inverse functions. Learn	Review for Success 1: Topic 6	11/15
	the properties of and graph exponential functions and logarithmic functions.	Review for Success 2: Topic 6	11/15
	Build financial, exponential, logarithmic and logistic models from data		
6	Review composite functions, one-to-one functions and inverse functions. Learn	Topic 6 Homework	11/19
	the properties of and graph exponential functions and logarithmic functions.	Topic 6 Test	11/19
	Build financial, exponential, logarithmic and logistic models from data	D : C C T : 11	11/22
	Identify and express conics in standard rectangular form and graph	Review for Success: Topic 11	11/22
7	Identify and express conics in standard rectangular form and graph	Topic 11 Homework Topic 11 Test	11/22
	Solve systems of equations using substitution, elimination, matrices, and	1	
8	determinants. Practice partial fraction decomposition	Review for Success 1: Topic 12	12/3
	determinants. Tractice partial fraction decomposition	Review for Success 2: Topic 12	12/3
		Topic 12 Homework Topic 12 Test	12/6 12/6
9	Write series in summation notation and find the sum of arithmetic and	Review for Success: Topic 13	12/0
9	geometric series. Practice mathematical induction and use the binomial theorem	Topic 13 Homework	12/10
	Topics from weeks 1 – 8	Final Exam	12/10
ı	Topics from weeks 1 – 0	Tillai Exalli	14/13

Page 1 of 2 Revision: August 2025

Course Number:		Course Title:		
Semester / Session:		Start / End Date:		

II. Grading and Testing Guidelines:

Final Grade Calculation

Activity	Qty	Points	Percentage
Review for Success	12	60	8
Homework	9	90	12
Test	5	500	60
Midterm	1	200	60
Final Exam	1	100	20

- 1. Topic 1 Homework and Review for Success
- 2. Topic 2 Homework
- 3. Topic 2 Test
- 4. Topic 3 homework and Reviews for Success 1 and 2
- 5. Topic 3 Test
- 6. Topic 4 Homework and Review for Success
- 7. Topic 5 Homework and Reviews for Success
- 8. Midterm Exam: Topics 1 5
- 9. Topic 6 Homework and Reviews for Success 1 and 2
- 10. Topic 6 Test
- 11. Topic 11 Homework and Review for Success
- 12. Topic 11 Test
- 13. Topic 12 Homework and Reviews for Success 1 and 2
- 14. Topic 12 Test
- 15. Topic 13 Homework and Review for Success
- 16. Comprehensive departmental final exam
- III. <u>Examination Policy</u>: Topic tests, the midterm and the final exam will all be completed on Lumen. Each of these assignments will be timed. Students will be given 150 minutes to take each test. Students will have two attempts per question, and each test must be completed in a single setting (i.e. the timer cannot be paused). Students will not be allowed to begin a test and then request an extension. Do not click on the exam link until you are fully prepared to take the exam.
- IV. <u>Class Attendance and Homework Make-Up Policy</u>: There are no live meetings for this course. You are expected to watch the recorded videos that will be posted in Lumen and then complete the homework in Lumen. I will accept late work, however, in an 8-week format, it is important that you do not get behind.
- V. <u>Classroom Expectations</u>: N/A

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Week 1	Oct 12	Oct 13	Oct 14	Oct 15	Oct 16	Oct 17	Oct 18 Review for Success: Topic 1 Due Topic 1 Homework Due
Week 2	Oct 19	Oct 20	Oct 21	Oct 22 Topic 2 Homework Due Topic 2 Test Due	Oct 23	Oct 24	Oct 25 Review for Success 1: Topic 3 Due Review for Success 2: Topic 3 Due
Week 3	Oct 26	Oct 27	Oct 28	Oct 29 Topic 3 Homework Due Topic 3 Test Due	Oct 30	Oct 31	Nov 1 Review for Success: Topic 4 Due Topic 4 Homework Due
Week 4	Nov 2	Nov 3	Nov 4	Nov 5 Review for Success: Topics 1 and 5 Due Review for Success: Topic 5 Due	Nov 6	Nov 7	Nov 8 Topic 5 Homework Due
Week 5	Nov 9	Nov 10	Nov 11	Nov 12 Midterm (Topics 1 – 5) Due	Nov 13	Nov 14	Nov 15 Review for Success 1: Topic 6 Due Review for Success 2: Topic 6 Due
Week 6	Nov 16	Nov 17	Nov 18	Nov 19 Topic 6 Homework Due Topic 6 Test Due	Nov 20	Nov 21	Nov 22 Review for Success: Topic 11 Due Topic 11 Homework Due
Week 7	Nov 23	Nov 24	Nov 25	Nov 26 Topic 11 Test Due	Nov 27	Nov 28	Nov 29
Week 8	Nov 30	Dec 1	Dec 2	Dec 3 Review for Success 1: Topic 12 Due Review for Success 2: Topic 12 Due	Dec 4	Dec 5	Dec 6 Topic 12 Homework Due Topic 12 Test Due
Week 9	Dec 7	Dec 8	Dec 9	Dec 10 Review for Success: Topic 13 Due Topic 13 Homework Due	Dec 11	Dec 12	Dec 13 Final Exam Due