

- A. <u>Academic Division</u>: Liberal Arts
- B. <u>Discipline</u>: Mathematics
- C. Course Number and Title: MATH1151 Calculus II
- D. <u>Course Coordinator:</u> Sara Rollo <u>Assistant Dean</u>: Dr. Steve Haynes

Instructor Information:

- Name: Click here to enter text.
- Office Location: Click here to enter text.
- Office Hours: Click here to enter text.
- Phone Number: Click here to enter text.
- E-Mail Address Click here to enter text.
- E. <u>Credit Hours</u>: 5
- F. <u>Prerequisites</u>: MATH1150 (Minimum grade of C- required)
- G. Syllabus Effective Date: Fall, 2019
- H. <u>Textbook(s) Title</u>:

On Campus Classes:

Calculus (packaged w/Web Assign)

- Author: Ron Larson/Bruce Edwards
- Copyright Year: 2018
- Edition: 11TH
- ISBN # 9781337604741

Off Campus Classes (at High Schools):

Calculus (packaged w/Web Assign)

- Author: Ron Larson/Bruce Edwards
- Copyright Year: 2014
- Edition: 10TH
- ISBN # 9781305718661
- I. <u>Workbook(s) and/or Lab Manual:</u> Supplies: TI-83 or TI-84 required
- J. <u>Course Description</u>: This course is a continuation of MATH1150 Calculus I. Topics include integration and applications, calculus of exponential and logarithmic functions, hyperbolic functions, methods of integration, integration by parts, indeterminate forms and L'Hôpital's Rule, moments and centers of mass, fluid pressure and force, integration techniques, series including Taylor and Maclaurin, calculus of conics, calculus of parametric equations, and polar forms of conic sections including Kepler's Laws. This course meets the requirements for OTM Calculus II TMM006. If combined with MATH1150, it meets the requirements for OTM Calculus I & II sequence TMM017.

K. <u>College-Wide Learning Outcomes</u>:

College-Wide Learning Outcome	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

	Outcomes	Assessments – How it is met & When it is met
1.	Employ a variety of integration techniques to evaluate special types of integrals and apply to physical, biological or economic situations.	Homework, Tests, Final Exam Weeks 1,2,3,6,7,8,9,10 and 12
2.	Approximate a definite integral by the Trapezoidal Rule.	Homework, Tests, Final Exam Weeks 1,4 and 16
3.	Evaluate limits that result in indeterminate forms, including the application of L'Hôpital's Rule.	Homework, Tests, Final Exam Weeks 9,10,12 and 16
4.	Evaluate improper integrals.	Homework, Tests, Final Exam Weeks 10,12 and 16
5.	Find, graph, and apply the equations of conics.	Homework, Tests, Final Exam Weeks 14 and 16
6.	Determine the existence of, estimate numerically and graphically, and find algebraically the limits of sequences and determine whether a series converges.	Homework, Tests, Final Exam Weeks 11,12,13 and 16
7.	Find the nth Taylor polynomial at a specified center for a function and estimate the error term.	Homework, Tests, Final Exam Weeks 13 and 16
8.	Analyze curves given parametrically and in polar form and find the areas of regions defined by such curves.	Homework, Tests, Final Exam Weeks 15 and 16
9.	Solve separable differential equations and understand the relationship between slope fields and solution curves.	Homework, Tests, Final Exam Weeks 4,5,8 and 16

M. <u>Topical Timeline (Subject to Change)</u>:

Weeks 1-2 Riemann sums and definite integrals Finding integrals by numerical integration –trapezoidal rule Differentiating natural logarithmic functions					
	Integrating natural logarithmic functions				
	Solving problems involving inverse functions				
	Differentiating and integrate exponential functions				
	Differentiating and integrating when there are bases other than <i>e</i>				
Week 4	Differential equations involving growth and decay				
Weeks 2-3	Differentiating inverse trigonometric functions				
	Integrating inverse trigonometric functions				
	Problems involving hyperbolic functions				

WI 1 6 0			
Weeks 6-8	The area of a region between two curves		
	Volumes using the disc method		
	Volumes using the shell and ring methods		
	Arc length and surfaces of revolutions of a function		
	Problems involving work		
	Problems involving fluid pressure and fluid force		
	Moments, centers of mass, and centroid		
Weeks 4-5	Interpreting and using slope fields in mathematical situations		
	Solving differential equations by using separation of variables		
	Solving first-order differential equations		
Weeks 9-10	Basic integration rules		
	Integration by parts		
	Integrating trigonometric functions		
	Integrating using trigonometric substitution		
	Integrating using partial fractions		
	Integrating by using tables and by other integration techniques		
	Indeterminate forms and L'Hôpital's Rule		
	Integrating improper integrals		
Weeks 11-14	Sequences		
	Determining the convergence of a series		
	Using the integral test and p-series to determine convergence		
	Comparing series to find convergence		
	Determining convergence for alternating series		
	Determining convergence by the ratio and root tests		
	Taylor polynomials and approximations		
	Representing functions by power series		
	Convergence of Taylor and Maclaurin series		
Weeks 14-16	Graphing conics		
	Graphing conic sections that have a rotation of axes		
	Graphing plane curves that are expressed as parametric equations		
	Parametric equations and calculus		
	Polar coordinates and polar functions and equations		
	Area and the arc length of problems in polar form		
	Polar forms of conic sections and use Kepler's Laws		

N. Course Assignments:

- Review of Chapter 4 [M. 1-2]
 Chapter 5 [M. 3-7, 9-11]
- 3. Test 1
- 4. Chapter 6 [M. 8, 19-21]
- 5. Chapter 7 [M. 12-18]
- 6. Test 2
- 7. Chapter 8 [M. 22-29]
- 8. Test 3
- 9. Chapter 9 [M. 30-38]
- 10. Test 4
- 11. Chapter 10 [M. 39-45]
- 12. Comprehensive Final Exam
- О. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80-82	B-	2.67	Above Average

77–79	C+	2.33	Average	
73–76	С	2.00	Average	
70-72	C-	1.67	Below Average	
67–69	D+	1.33	Below Average	
63-66	D	1.00	Below Average	
60-62	D-	0.67	Poor	
00-59	F	0.00	Failure	

P. <u>Grading and Testing Guidelines</u>:

Hmwrk/Quiz 15%; EWA 10%; Tests 50%; Final 25%

Q. <u>Examination Policy</u>:

Click here to enter text.

R. <u>Class Attendance and Homework Make-Up Policy</u>:

Click here to enter text.

S. <u>Classroom Expectations</u>:

Click here to enter text.

T. <u>College Procedures/Policies</u>:

Important information regarding College Procedures and Policies can be found on the <u>syllabus</u> <u>supplement</u> located at https://sharept.ncstatecollege.edu/committees/1/curriculum/SiteAssets/SitePages/Home/SYLLABUS %20SUPPLEMENT.pdf

The information can also be found Choose an item.