

- A. <u>Academic Division</u>: Business, Industry, and Technology
- B. <u>Discipline</u>: Information Technology Software Development
- C. <u>Course Number and Title</u>: ITEC1860 Introduction to Programming

D. <u>Course Coordinator</u>: Jesse Payne <u>Assistant Dean</u>: Toni Johnson, PhD

Instructor Information:

- Name: Click here to enter text.
- Office Location: Click here to enter text.
- Office Hours: Click here to enter text.
- Phone Number: Click here to enter text.
- E-Mail Address Click here to enter text.
- E. <u>Credit Hours</u>: 3 Lecture: 2 hours Laboratory: 2 hours
- F. <u>Prerequisites</u>: None
- G. <u>Syllabus Effective Date</u>: Fall 2019
- H. <u>Textbook(s) Title</u>:

Python Programming in Context

- Authors: Bradley N. Miller, David L. Ranum
- Publisher: Jones & Bartlett Learning
- Copyright Year: 2013
- Edition: 2nd Edition
- ISBN#: 1449699391

I. <u>Workbook(s) and/or Lab Manual</u>: An external USB3.0 hard drive, 500 gigabytes or larger is required.

Python Pocket Reference

- Author: Mark Lutz
- Copyright Year: 2014
- Edition: 5th Edition
- ISBN#: 9781449357016
- J. <u>Course Description</u>: Python is a user-friendly, object-oriented programming language. This course provides a clear, accessible, and skill-focused approach to programming with Python using Python 3. The course offers students a thorough overview of multiple applied areas, including image processing, cryptography, astronomy, the Internet, and bioinformatics. Problem sets are based on real-world examples and problem-solving rather than language features. This course offers students a solid platform of key problem-solving skills that translate easily across programming languages.

K. <u>College-Wide Learning Outcomes</u>:

College-Wide Learning Outcome	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

	Outcomes	Assessments – How it is met & When it is met
1.	Describe the use of lists as a means of storing data	Weeks 2-4 labs, midterm/final exam
2.	Demonstrate nested iteration	Weeks 5-6 labs, midterm/final exam
3.	Demonstrate image processing algorithms	Week 7 labs, midterm/final exam
4.	Explain advanced examples of using lists in Python	Week 8 labs, midterm/final exam
5.	Create recursive functions	Week 9 labs, midterm/final exam
6.	Implement graphical simulations using objects	Weeks 10 & 11 labs, final exam
7.	Design a large multiclass application	Weeks 12-14 labs, final exam
8.	Create a working object-oriented graphics package	Weeks 12-14 labs, final exam

M. <u>Topical Timeline (Subject to Change)</u>:

Week 1: Python Overview

- Week 2: π thon
- Week 3: Codes and Other Secrets
- Week 4: A nest of Snakes: Introducing the Python Collections
- Week 5: Earthquakes, Floods, and Other Natural Disasters
- Week 6: Pycture Perfect Programs
- Week 7: Data Mining: Cluster Analysis
- Week 8: Cryptanalysis
- Week 9: Fractals: The Geometry of Nature
- Week 10: Astronomy
- Week 11: Bears, Fish, and Plants, Oh My!
- Week 12: Your Father Was a Rectangle
- Week 13: Video Games
- Week 14: Labs
- Week 15: Review, Term Project (optional)
- Week 16: Lab Makeup/Final Exam

N. <u>Course Assignments</u>:

- 1. Labs
- 2. Tests
- 3. Midterm Exam
- 4. Final Exam
- 5. Final Project (optional)

O. <u>Recommended Grading Scale</u>:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	А	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80-82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	С	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor
00-59	F	0.00	Failure

P. <u>Grading and Testing Guidelines</u>:

Click here to enter text.

Q. <u>Examination Policy</u>:

Click here to enter text.

R. <u>Class Attendance and Homework Make-Up Policy</u>:

Click here to enter text.

S. <u>Classroom Expectations</u>:

Click here to enter text.

T. <u>College Procedures/Policies</u>:

Important information regarding College Procedures and Policies can be found on the <u>syllabus</u> <u>supplement</u> located at https://sharept.ncstatecollege.edu/committees/1/curriculum/SiteAssets/SitePages/Home/SYLLABUS %20SUPPLEMENT.pdf

The information can also be found Choose an item.