

- A. <u>Academic Division</u>: Health Sciences
- B. <u>Discipline</u>: Science
- C. <u>Course Number and Title</u>: CHEM1210 Chemistry I
- D. <u>Course Coordinator</u>: <u>Assistant Dean</u>: Melinda S. Roepke, MSN, RN

Instructor Information:

- Name: Click here to enter text.
- Office Location: Click here to enter text.
- Office Hours: Click here to enter text.
- Phone Number: Click here to enter text.
- E-Mail Address Click here to enter text.
- E. <u>Credit Hours</u>: 5

Lecture: 4 hours Laboratory: 3 hours

- F. <u>Prerequisites:</u> High School Chemistry (minimum of C- required)
 -AND-MATH 1110 (minimum of C- required) or qualifying placement test score
- G. Syllabus Effective Date: Fall 2019
- H. <u>Textbook(s) Title</u>:

Chemistry: The Central Science (plus Mastering Chemistry)

- Author(s): Brown, LeMay, Bursten, Murphy
- Copyright Year: 2018
- Edition: 14th
- ISBN: 9780134557328

Optional Textbooks: Student's Guide to Accompany Chemistry: The Central Science

- Author(s): Hill
- Copyright Year: 2018
- Edition: 14th
- IBSN: 9780134554075
- I. Workbook(s) and/or Lab Manual:

Chemistry 1220 General Chemistry Laboratory Manual, Hayden-McNeil Publishing, Inc.

- Author(s): Hill
- Copyright Year: Produced for Ohio State University
- Edition:
- ISBN: 9780738091105

- J. <u>Course Description</u>: This is the first semester of chemistry for science majors or pre-professional students. A quantitative introduction to dimensional analysis with significant figures, atomic structure, the molecule, principles of ionic bonding, stoichiometry, chemical solutions, thermochemistry, classification of elements including periodicity, electron configuration, gases, liquids, and solids. Student will be exposed to applications of chemistry in society. (TAG # OSC008; If combined with CHEM1220 TAG # OSC023)
- K. <u>College-Wide Learning Outcomes</u>

College-Wide Learning Outcomes	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

	Outcomes	Assessments – How it is met	
		& When it is met	
1.	Define the fundamentals of the properties of matter,	Quiz-1 st week	
	measurement, and uncertainty.	Midterm Exam– 4 th week	
		Final – 15 th week	
2.	Explain the modern theory of atomic structure and	$Quiz - 2^{nd}$ week	
	atomic level phenomena	Mid-Term Exam – 4 th week	
		Final – 15 th week	
		Formal Written Lab Report – weekly	
3.	Utilize the symbolism and language of chemistry by	$Quiz - 2^{nd}$ week	
	converting chemical elements, ionic and binary	Midterm Exam–4 th week	
	covalent compounds from chemical formulas.	Final Exam – 15 th week	
		Formal Written Lab Reports - weekly	
4.	Demonstrate an understanding of the organization	Quiz – 3 rd week	
	and information conveyed by the periodic table of	Mid-Term Exam – 4 th week	
	chemical elements	Formal Written Lab Reports – weekly	
		Final Exam – 15 th week	
5.	Describe and identify selected types of chemical	Quiz – 5 th week	
	reactions through acids, bases, salts, non-	Mid-Term Exam – 8 th week	
	electrolytes and electrolyte, plus oxidation/reduction	Written Lab Reports – weekly	
		Final Exam – 15 th week	
6.	Explain modern chemical bonding theories and their	Mid-Term Exam – 8 th week	
	implications related to ionic, covalent, Lewis	Quiz-9 th week	
	structures, atomic orbital overlap, and molecular	Quiz-10 th week	
	orbital theories	Mid-Term Exam – 13 th week	
		Formal Written Lab Reports - weekly Final	
		Exam – 15 th week	
7.	Explain the quantitative implications of chemical	Mid-Term Exam – 4 th week	
	formulas and chemical reactions including	Written Lab Reports – weekly	
	processes occurring in solutions using Avogadro's	Final Exam – 15 th week	
	number and mole concept		

	Outcomes	Assessments – How it is met
		& When it is met
8.	Describe the various forms of energy and the	Quiz- 6 th week
	various roles energy plays in physical processes and	Mid-Term Exam – 8 th week
	chemical systems and reactions including	Quiz- 9 th week
	electromagnetic radiation, combustion reactions,	Mid-Term Exam – 13 th week
	thermodynamics, and Hess law	Formal Written Lab Reports – weekly
		Final Exam – 15 th week
9.	Explain the social and philosophical implications of	Final Exam – 15 th week
	scientific discoveries and understand the potential of	
	science and technology to address problems of the	
	contemporary world.	

M. <u>Topical Timeline (Subject to Change)</u>:

Weeks	Lecture Topic			
2	Classification of matter, Physical and chemical properties, Units, Significant figures,			
	Dimensional analysis.			
3	Atomic structure, Atomic weights, Periodic			
	table, Molecular substances, Polyatomic ions, Ionic compounds, Naming compounds			
4	Stoichiometry Balanced chemical equations, Simple reactions, Percent			
	composition, Avogadro's number and the mole, Empirical Formulas			
5	Stoichiometry Quantitative information from balanced equations, Limiting			
	reactants Aqueous reactions: Strong and weak electrolytes, Precipitation			
	reactions, Acid-base reactions			
6	Aqueous reactions: Oxidation-reduction reactions, Molarity, Titrations			
	and solution stoichiometry			
7	Thermochemistry Kinetic & potential energy, System & surroundings,			
	Work & heat, 1st Law of thermodynamics, Reaction enthalpy, Calorimetry, Hess' law,			
	Enthalpy of formation, Foods and fuels			
8	Electronic structure of atoms Wave nature of light, Photons, Line spectra and the Bohr			
	model, Wave-particle duality of matter, Quantum mechanics			
0	and atomic orbitals			
9	Basic Concepts of Chemical Bonding Electronic structure of atoms. Many electron			
	atoms, Electron configuration, Electron configuration and the Periodic Table Periodic			
	properties of the elements. Development of the periodic table, Effective nuclear			
10	Dariadia propartias of the elements. Metale/Normetale/Metalloide			
10	Trands for solact groups in the pariodic table Basic concepts of chamical bonding			
	Lewis symbols and the Octet rule. Jonic bonding			
11	Basic concents of chemical bonding. Covalent bonding, Electronegativity			
11	and polar bonds. Lewis structures. Resonance structures. Exceptions to the octet rule			
	Bond enthalpy and bond length			
12	Molecular geometry and bonding theories VSEPR model Molecular			
12	shapes. Molecular polarity. Covalent bonding and orbital overlap. Hybrid orbitals.			
	Sigma and pi bonding Gases			
13	Molecular geometry and bonding theories. Phases of orbitals, Molecular			
	orbital theory Gases: Characteristics of gases, Pressure, The gas laws, The			
	ideal gas equation			
14	Gases, Gas mixtures and partial pressures, Kinetic-molecular theory of			
	gases, Molecular effusion and diffusion, Real gases. Solids and Modern Materials			

	Bonding in solids, Translational symmetry and the structures of solids		
15	Solids and Modern Materials: Structures of metallic solids, Metallic		
	bonding, Alloys, Ionic solids, Molecular solids, Covalent-network solids, Polymeric		
	solid, Nanomaterial		

Laboratory exercises

Laboratory
Introduction to Scientific Measurement. Students use various instruments for measuring mass
and volume. The lab introduces students to concepts associated with making scientific
measurements.
Identification of an Unknown Compound. Students carry out precipitation reactions and balance
chemical equations.
Empirical Formula of an Oxide. Students conduct a combustion reaction and derive an empirical
formula.
How much Acetic Acid is in Vinegar? Students carry out an acid-base titration.
Activity Series. Students carry out displacement reactions and derive an activity series.
Line Spectra of Elements. Students collect and analyze helium and hydrogen atom emission
spectra.
Two Families on the Periodic Table: Alkaline Earths and Halogens. Students conduct
precipitation reactions on compounds of alkaline earths and oxidation-reduction reactions on the
halogens to identify the cation and anion in an unknown.
Bonding Types. Students conduct and analyze ionic and covalent compounds with regard to
solubility, melting point and conductivity. Based on those observations, students identify bonding
types of four unknowns.
Qualitative Determination of Select Metal Cations: Students carry out reactions between nine
different metal cations with six different reagents and record their observations. Based on those
observations students then design their own chemical tests to identify an unknown cation.
Molecular Models : Covalent Bonding and Shapes of Molecules. Students build models of ten
compounds using concepts of covalent bonding, Lewis and resonance structures, and polarity.
Molar Mass of a Volatile Liquid. Students vaporize an unknown liquid. Using concepts of mass,
temperature and volume and the ideal gas equation, they determine its molar mass.
Crystal Solids. Students use models to take a deeper look at the structures and properties of
crystalline solids, including: unit cells, Bravais lattices, close packing, coordination numbers, and
density.

Course Assignments: N.

- Homework
 Lab Reports
- О. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	А	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80-82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	С	2.00	Average

70-72	C-	1.67	Below Average	
67–69	D+	1.33	Below Average	
63-66	D	1.00	Below Average	
60-62	D-	0.67	Poor	
00-59	F	0.00	Failure	

P. <u>Grading and Testing Guidelines</u>:

Click here to enter text.

Q. <u>Examination Policy</u>:

Click here to enter text.

R. <u>Class Attendance and Homework Make-Up Policy</u>:

Click here to enter text.

S. <u>Classroom Expectations</u>:

Click here to enter text.

T. <u>College Procedures/Policies</u>:

Important information regarding College Procedures and Policies can be found on the syllabus supplement located at

https://sharept.ncstatecollege.edu/committees/1/curriculum/SiteAssets/SitePages/Home/SYLLABUS %20SUPPLEMENT.pdf

The information can be found Choose an item.