

A. <u>Academic Division</u>: Health Sciences

B. <u>Discipline</u>: Bioscience Technology

C. <u>Course Number and Title</u>: BIOS 2530 Genetics

D. <u>Course Coordinator</u>: Jason Tucker, M.S.

Assistant Dean: Melinda Roepke, MSN, RN

Instructor Information:

Name: Click here to enter text.
 Office Location: Click here to enter text.
 Office Hours: Click here to enter text.
 Phone Number: Click here to enter text.
 E-Mail Address Click here to enter text.

E. <u>Credit Hours</u>: 4

Lecture: 3 Laboratory: 3

F. <u>Prerequisites</u>: BIOS 2410 <u>Co-requisite</u>: BIOS2590c

G. Syllabus Effective Date: Fall, 2019

H. <u>Textbook(s) Title</u>:

Essentials of Genetics

• Authors: Klug, Cummings, Spencer, Palladino, & Killian

• Copyright Year: 2020

• Edition: 10th

• ISBN: 9780134898414

I. Workbook(s) and/or Lab Manual:

Title: Genetics Laboratory Investigations

• Authors: Thomas L Mertens, Robert L. Hammersmith

• Copyright Year: 2015

Edition: 14th

• ISBN: 9780321814173

J. <u>Course Description</u>: During this course we will discuss the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Updated: 01-16-2019 Page 1 of 4

K. <u>College-Wide Learning Outcomes</u>:

College-Wide Learning Outcome	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	Homework assignments and Lab reports require assimilating data and drawing conclusions-Weekly. Critical Thinking VALUE Rubric: On Gene Expression, Regulation, and Development Lab Report (Week 6-9)
Information Literacy	
Quantitative Literacy	Lab reports require simple statistics, and graphing Throughout the semester. Quantitative Literacy VALUE Rubric

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

	Outcomes	Assessments – How it is met
		& When it is met
1.	Describe and differentiate between the steps of	Lab Reports-Week 1-2; First interim exam-
	Mitosis and Meiosis.	Week 6; Final exam
2.	Describe sex determination and the role of sex	Lab Report-Week 3; First interim exam-Week
	chromosomes.	6; Final exam
3.	Synthesize the structure, replication and variation of	Lab Reports-Week 4-5; First interim exam-
	DNA.	Week 6; Final exam
4.	Describe gene expression, regulation and	Lab reports week 6-9; Second interim exam-
	development.	week 12; Final exam
5.	Illustrate the role of the cell cycle as it applies to	Second interim exam-week 12; Final exam
	cancer.	
6.	Demonstrate how recombinant DNA technology	Lab reports week 10-12; Second interim
	can be used to study current genetic topics.	exam-week 12; Final exam
7.	Integrate and relate knowledge of modern genetics	Lab reports week 13-15; Final exam
	to real life situations	
8.	Apply current research literature, information	Research paper on topics related to materials
	related to genetic issues in the mass media	covered in class-Week10-12.

M. <u>Topical Timeline (Subject to Change)</u>:

Week	Topical Timeline		
1, 2 and 3	Genes, Chromosomes, and Heredity		
	 Introduction to Genetics 		
	 Mitosis and Meiosis 		
	 Mendelian Genetics 		
	 Sex Determination and Sex Chromosomes 		
	Chromosome Mutations: Variation in Number and Arrangement		

Updated: 01-16-2019 Page 2 of 4

Week	Topical Timeline		
4 and 5	DNA: Structure, Replication, and Variation		
	DNA Structure and Analysis		
	 DNA Replication and Recombination 		
	DNA Organization in Chromosomes		
6, 7, 8 and 9	Gene Expression, Regulation, and Development		
	 The Genetic Code and Transcription, Translation and Proteins 		
	 Gene Mutation, DNA Repair, and Transposition 		
	Developmental Genetics		
	Cancer and Regulation of the Cell Cycle		
10, 11 and 12	Genomics		
	 Recombinant DNA Technology 		
	 Genomics, Bioinformatics, and Proteomics 		
	 Applications and Ethics of Genetic Engineering and Biotechnology 		
	Population and Evolutionary Genetics		
13, 14 and 15	Special Topics in Modern Genetics		
	Population and Evolutionary Genetics		
	 Epigenetics 		
	DNA Forensics		
	Genomics and Personalized Medicine		
	Genetically Modified Foods		
	Gene Therapy		

Lab (Will correspond roughly to Lecture Material Presentation Time Schedule)

- 1. Cell Reproduction: Mitosis.
- 2. Meiosis in Animals: Oogenesis and Spermatogenesis.
- 3. Sex Chromosomes and Gene Transmission.
- 4. The Sex Check: A Study of Sex Chromatin in Human Cells.
- 5. Linkage and Crossing Over.
- 6. The Genetic Material: Isolation of DNA.
- 7. Restriction Endonuclease Digestion and Gel Electrophoresis of DNA.
- 8. Amplification of DNA Polymorphisms by Polymerase Chain Reaction (PCR) and DNA Fingerprinting.
- 9. Transformation of E. coli.
- 10. Gene Action: Synthesis of Galactosidase in Escherichia coli.
- 11. Bacterial Mutagenesis.
- 12. Gene Recombination in Phage.
- 13. Polygenic Inheritance: Fingerprint Ridge Count.
- 14. Population Genetics: The Hardy-Weinberg Principle.
- 15. Population Genetics: The Effects of Selection and Genetic Drift.

N. <u>Course Assignments</u>:

Research Paper (Week 10-12) Lab Reports (Weekly) Interim exams (Week 6 and 12) Final Exam (Week 16)

Updated: 01-16-2019 Page **3** of **4**

O. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80–82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	C	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor
00-59	F	0.00	Failure

P. <u>Grading and Testing Guidelines</u>:

Click here to enter text.

Q. <u>Examination Policy</u>:

Click here to enter text.

R. Class Attendance and Homework Make-Up Policy:

Click here to enter text.

S. <u>Classroom Expectations</u>:

Click here to enter text.

T. <u>College Procedures/Policies</u>:

 ${\bf Important\ information\ regarding\ College\ Procedures\ and\ Policies\ can\ be\ found\ on\ the\ \underline{syllabus\ supplement}\ located\ at}$

https://sharept.ncstatecollege.edu/committees/1/curriculum/SiteAssets/SitePages/Home/SYLLABUS %20SUPPLEMENT.pdf

The information can also be found Choose an item.

Updated: 01-16-2019 Page 4 of 4