

- A. <u>Academic Division</u>: Health Sciences
- B. <u>Discipline</u>: Bioscience Technology
- C. <u>Course Number and Title</u>: BIOS2410 Advanced Bioscience Techniques
- D. <u>Course Coordinator</u>: Jason Tucker, M.S. Assistant Dean: Melinda Roepke, MSN, RN

Instructor Information:

- Name: Click here to enter text.
- Office Location: Click here to enter text.
- Office Hours: Click here to enter text.
- Phone Number: Click here to enter text.
- E-Mail Address Click here to enter text.
- E. <u>Credit Hours</u>: 4 Lecture: 2 hours Laboratory: 4 hours
- F. <u>Prerequisites</u>: BIOS1010, BIOL1230, BIOL1231c
- G. Syllabus Effective Date: Fall, 2020
- H. <u>Textbook(s) Title</u>:

Molecular Biology of the Gene

- Author(s)/Editor(s): Watson, Baker, Bell, Gann, Levine, Losick/Benjamin Cummings
- Copyright Year: 2013
- Edition: 7th
- ISBN #: 978-0321762436
- I. <u>Workbook(s) and/or Lab Manual</u>: None
- J. <u>Course Description</u>: This course will focus on Molecular Biology and will examine the advanced instruments and methods of analysis used in the laboratory today. The course will include a comprehensive review of advanced bioscience laboratory techniques utilized in the field today to include indications, process, advantages, disadvantages, analytical protocols, and performing specific laboratory techniques. Students will complete a semester long research project using a model organism which will encompass some of the major molecular biology techniques. Students will then write up results in the form of a scientific publication.

K. <u>College-Wide Learning Outcomes</u>

College-Wide Learning Outcomes	Assessments How it is met & When it is met
Communication – Written	Weekly written entries in lab journal. End of semester
	Scientific Paper. Communication – Written VALUE
	Rubric
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	

L. <u>Course Outcomes and Assessment Methods</u>:

Upon successful completion of this course, the student shall:

Outcomes	Assessments – How it is met
	& When it is met
Define model organisms and explain their importance to	Lab Entries-Week 1-2; First interim
scientific research.	exam-Week 6; Final exam, End of
	Semester Research Paper
Describe the types of viruses and their modes of infections.	Lab Entries-Week 3; First interim exam-
	Week 6; Final exam; End of Semester
	Research Paper
Describe the major concepts in molecular evolution and its	Lab Entries-Week 4-5; First interim
impact on nucleic acid sequences.	exam-Week 6; Final exam; End of
	Semester Research Paper
Demonstrate the use of spectrophotometry in molecular	Lab Entries-Week 4-5; Second interim
research.	exam-Week 12; Final exam; End of
	Semester Research Paper
Synthesize the transcription, translation and expression of	Lab Entries-Week 7-9; Second interim
genes and describe how biotechnology uses these processes	exam-Week 12; Final exam; End of
to obtain new information.	Semester Research Paper
Demonstrate how recombinant DNA technology can be used	Lab Entries-Week 10; Second interim
to study current research topics.	exam-Week 12; Final exam; End of
	Semester Research Paper
Apply the concepts of nucleic acid sequencing to the study	Lab Entries-Week 11-13; Second interim
of genomics and proteomics.	exam-Week 12; Final exam; End of
	Semester Research Paper
Apply current research literature, and information related to	Lab Entries-Week 14-15; Final exam;
bioinformatics and relate it to our use in class.	End of Semester Research Paper

M. <u>Topical Timeline (Subject to Change)</u>:

Week	Topical Timeline		
1 and 2	Model Organisms		
	Scientific Literature Review		
3	Virology		
4 and 5	Molecular Evolution		
	Nucleic Acids		
	Biological Database Searches		
6	Spectrophotometry		

Week	Topical Timeline			
7, 8 and 9	Oligonucleotide Primers			
	Transcription and Reverse Transcription			
	DNA Replication and Polymerase Chain Reactions			
	Electrophoresis			
10	DNA Transformations			
11, 12 and 13	Nucleic Acid Sequencing			
	Metagenomics and Proteomic Studies			
	Microsatellites			
	Gene Expression/ Protein Analysis			
14 and 15	Bioinformatics			
	Phylogenetics			

N. Course Assignments:

- 1. Oral presentations of advanced topics in Bioscience (Week 13)
- 2. Scientific Write up of semester long Research project (Week 15)
- Group presentation (Week 8)
 Weekly lab journal entries (Weekly)
- 5. Interim exams (Week 6 and 12)
- 6. Final Exam (Week 16)

0. Recommended Grading Scale:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80-82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	С	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor
00-59	F	0.00	Failure

P. Grading and Testing Guidelines:

Click here to enter text.

Q. **Examination Policy:**

Click here to enter text.

R. Class Attendance and Homework Make-Up Policy:

Click here to enter text.

S. <u>Classroom Expectations</u>:

Click here to enter text.

T. <u>College Procedures/Policies</u>:

Important information regarding College Procedures and Policies can be found on the <u>syllabus</u> <u>supplement</u> located at

http://catalog.ncstatecollege.edu/mime/download.pdf?catoid=5&ftype=2&foid=3