

- A. <u>Academic Division</u>: Liberal Arts
- B. <u>Discipline</u>: Statistics
- C. <u>Course Number and Title</u>: STAT1030 Statistical Analysis
- D. <u>Course Coordinator</u>: Sara Rollo <u>Assistant Dean</u>: Dr. Steve Haynes

Instructor Information:

- Name: Click here to enter text.
- Office Location: Click here to enter text.
- Office Hours: Click here to enter text.
- Phone Number: Click here to enter text.
- E-Mail Address Click here to enter text.
- E. <u>Credit Hours</u>: 3
- F. <u>Prerequisites:</u> STAT1010 (Minimum grade of C- required)
- G. <u>Syllabus Effective Date</u>: Fall, 2019
- H. <u>Textbook(s) Title</u>:

Statistics Informed Decisions Using Data

- Author: Michael Sullivan, III
- Copyright Year: 2016
- Edition: 5th
- ISBN: 9780134135373
- I. Workbook(s) and/or Lab Manual: TI-83 or TI-84 required
- J. <u>Course Description</u>: Students in this course learn analysis techniques including, hypothesis testing and confidence intervals for standard deviations for one and two populations, contingency tables (chi-squared), analysis of variance (ANOVA), least squares method, multiple regression models, and non-parametric hypothesis tests. Students will design, develop, and present a statistical analysis project.
- K. <u>College-Wide Learning Outcomes</u>:

College-Wide Learning Outcome	Assessments How it is met & When it is met
Communication – Written	
Communication – Speech	
Intercultural Knowledge and Competence	
Critical Thinking	
Information Literacy	
Quantitative Literacy	

L. Course Outcomes and Assessment Methods:

Upon successful completion of this course, the student shall	Upon successful	completion	of this course,	the student	shall:
--	-----------------	------------	-----------------	-------------	--------

Outcomes		Assessments – How it is met	
		& When it is met	
1.	Construct confidence intervals and test hypotheses	HW, Tests, final exam	
	for standard deviations.	Weeks 1,2,4 and 16	
2.	Analyze statistical situations to ascertain what type	HW, Tests, final exam	
	of answer is appropriate and which	Weeks 4 and 16	
	formulas/variables should be used.		
3.	Construct confidence intervals and test hypotheses	HW, Tests, final exam	
	for means and proportions where there are two	Weeks 5,6,7,8,12 and 16	
	populations.		
4.	Conduct a goodness of fit test using the chi-square	HW, Tests, final exam	
	distribution.	Weeks 9, 12 and 16	
5.	Analyze the relationship of three or more	HW, Tests, final exam	
	populations means using analysis of variance	Weeks 10,12 and 16	
	techniques (ANOVA), i.e. the F-test.		
6.	Design and conduct post-hoc ANOVA tests using	HW, Tests, final exam	
	Tukey's test.	Weeks 11,12 and 16	
7.	Conduct a two-way ANOVA.	HW, Tests, final exam	
		Weeks 12 and 16	
8.	Make inferences using the least squares method.	HW, Tests, final exam	
		Weeks 13 and 16	
9.	Create multiple regression models.	HW, Tests, final exam	
		Weeks 14 and 16	
10.	Test hypotheses using appropriate non-parametric	HW, Tests, final exam	
	tests.	Weeks 15 and 16	
11.	Design and complete a statistical analysis project by	Oral presentation and Written project	
	utilizing a data file or using survey data, describing	Weeks 12-16	
	the data both numerically and visually, analyzing		
	the data, and drawing appropriate conclusions.		

Topical Timeline (Subject to Change): M.

Week 1	Confidence intervals for standard deviations
Weeks 2-3	Hypothesis tests concerning standard deviations.
Week 4	Statistical analysis techniques.
Week 5	Confidence intervals for means and proportions where there are two populations.
Weeks 6-8	Hypothesis tests for means and proportions where there are two populations.
Week 9	Goodness of fit test using the chi-square distribution.
Week 10	Analysis of the relationship of three or more populations means using analysis of
	variance techniques (ANOVA), i.e. the F-test.
Week 11	Post-hoc ANOVA tests using Tukey's test.
Week 12	Two-way ANOVA.
Week 13	The least squares method.
Week 14	Multiple regression models.
Week 15-16	Hypothesis tests using appropriate non-parametric tests.
Week 15-16	Guidelines to design and complete a statistical analysis project.

Course Assignments: N.

- HW from text and handouts
 Quizzes

- 3. Tests
- 4. Statistical project (VALUE rubric, Information Literacy)
- 5. Comprehensive final exam

O. <u>Recommended Grading Scale</u>:

NUMERIC	GRADE	POINTS	DEFINITION
93–100	A	4.00	Superior
90–92	A-	3.67	Superior
87–89	B+	3.33	Above Average
83–86	В	3.00	Above Average
80-82	B-	2.67	Above Average
77–79	C+	2.33	Average
73–76	С	2.00	Average
70-72	C-	1.67	Below Average
67–69	D+	1.33	Below Average
63-66	D	1.00	Below Average
60-62	D-	0.67	Poor
00-59	F	0.00	Failure

P. <u>Grading and Testing Guidelines</u>:

Tests	40%
Homework / Quizzes	20%
Project	20%
Comprehensive Departmental Final Exam	20%

Q. <u>Examination Policy</u>:

Click here to enter text.

R. <u>Class Attendance and Homework Make-Up Policy</u>:

Click here to enter text.

S. <u>Classroom Expectations</u>:

Click here to enter text.

T. <u>College Procedures/Policies</u>:

Important information regarding College Procedures and Policies can be found on the <u>syllabus</u> <u>supplement</u> located at https://sharept.ncstatecollege.edu/committees/1/curriculum/SiteAssets/SitePages/Home/SYLLABUS %20SUPPLEMENT.pdf

The information can also be found Choose an item.